GRAPHICAL ABSTRACTS

Tetrahedron Lett. 30,929(1989) A CONVENIENT SYNTHESIS OF OPTICALLY PURE (S,S)-NORPSEUDOEPHEDRINE Armin Boerner and Hanswalter Krause Central Institute of Organic Chemistry, Division of Complex Catalysis GDR Academy of Sciences, 2500 Rostock, GDR OH 3 steps 5 steps Tetrahedron Lett. 30,931(1989) TDA-1 CATALYSIS IN SMILES REARRANGEMENT OF N-ARYLPHENOXYAMIDES. ACCELERATING EFFECT OF THE 2,4,6-TRICHLORO SUBSTITUTION. A. GREINER Rhône Poulenc Agrochimie, Centre de Recherches de la Dargoire, BP 9163 69263-LYON CEDEX 09, France N KOH powder, RX N TDA-1 cat. Tetrahedron Lett. 30,937(1989) N-PHENYLATION OF AMINO ACID DERIVATIVES, Derek H.R. Barton^a, Jean-Pierre Finet^{*,b}, Jamal Khamsi^b a - Texas A & M University, College Station, TX77843, USA b - Faculté des Sciences St Jérôme, 13397 Marseille Cedex 13, France. $\frac{Ph_{3}Bi(OAc)_{2} + H_{2}N-CH-COOR^{2}}{1} \qquad \frac{Cu}{PhNH-CH-COOR^{2} + Ph_{2}N-CH-COOR^{2}}$ $\frac{1}{2} \qquad R^{1} \qquad \frac{2}{2} \qquad R^{1} \qquad R$ 3 : 16-92% 4 : 4-85% Tetrahedron Lett. 30,941(1989) BICYCLO-BIS-INTERCALANDS : SYNTHESIS OF TRIPLY BRIDGED BIS-INTERCALANDS BASED ON ACRIDINE SUBUNITS. Sylvain Claude, Jean-Marie Lehn*, Jean-Pierre Vigneron Laboratoire de Chimie des Interactions Moléculaires, Collège de France, 11, Place Marcelin Berthelot, 75005 PARIS Macrobicyclic receptor molecules built on ' two triply-bridged acridine intercalating subunits have been synthesized via an efficient intramolecular cyclization procedure.

		
	Tetrahedron Lett. <u>30</u> ,945(1989)	
INORGANIC SOLIDS IN "DRY MEDIA". AN EFFICIENT WAY FOR DEVELOPING MICROWAVE IRRADIATION ACTIVATED ORGANIC REACTIONS E.Gutteriez ¹ ,A.Loupy ² ,G.Bram ² and E.Ruiz-Hitzky ¹ - ¹ Instituto de Ciencia de Materiales, Madrid (Spain) ² Laboratoire des Réactions Sélectives sur Supports, Orsay (France)		
pinacol microwave 450W, 15min pinacol pinacolone 94-99% (M ⁿ⁺ -montmorillonite)		
ACOK + BrC_8H_{17} $\xrightarrow{microwave 600W; 10min}$ ACOC $_8H_{17}$	82% (silica) ; 91% (alumina)	
	Tetrahedron Lett. <u>30</u> ,949(1989)	
AN EFFICIENT SYNTHESIS OF CHIRAL, NONRACEMIC ISOPROPYL ALKENYLMETHYLPHOSPHINATES VIA PALLADI Yuanyao Xu*, Hengxu Wei, Jing Zhang and Guohua I Shanghai Institute of Organic Chemistry, Academ 345 LingLing Lu, Shanghai, People's Republic of CH_3 PO + RBr cat . CH_3 PO CH_3 i -Pro H Et_3N i -Pro R; i -Pro H (R) (S) (S) R =alkenyl; cat. =Pd(PPh_3)_4	UM ROUTE Huang ia Sinica, China + RBr $\begin{array}{c} cat. \\ cat. \\ Et_3N \end{array} \begin{array}{c} CH_3 \\ PP \\ i-Pr O \end{array} \begin{array}{c} 0 \\ R \end{array}$	
FIRST EXAMPLE OF THERMALLY STABLE HYPERVALENT BISMUTH ATE COMPLEX (12-Bi-6) WITH TWO BIDENTATE LIGANDS: SYNTHESIS AND STRUCTURE Kin-ya Akiba, * Keisuke Ohdoi, and Yohsuke Yamamoto, Department of Chemistry, Faculty of Science, Hiroshima Uni A hexacoordinate bismuth ate complex (1A) was	Tetrahedron Lett. <u>30</u> ,953(1989)	
synthesized and the structure was determined by F NMR. 1A was 7 Ci T_{Ci}	$ \begin{array}{c} Tol \\ H_2 O \\ HO \\ F_5 C Tol \\ HO \\ F_5 C Tol \\ 11 \end{array} $	
4,4'-TETRAMETHYLDIAMINODIPHENYLMETHANOL FROM TETRABASE WITH HEMIN IN ACETIC ACID Atsushi Ohkoshi, Katsunobu Takahashi, Ayako Matsushima, Kazuya Abe and Yuji Inada [*] Department of Materials Science and Technology, Toin University of Yokohama Kurogane-cho 1614, Midori-ku, Yokohama 227, Japan		
$ \begin{array}{c} {}^{\text{CH}_3} \\ {}^{\text{CH}_3} \end{array} \times - \begin{array}{c} {}^{\text{CH}_2} \\ - \end{array} ^{\text{CH}_3} \\ {}^{\text{CH}_3} \end{array} ^{\text{Hemin, in 80\% CH_3C00H}} ^{\text{OH}^-} \begin{array}{c} {}^{\text{CH}_3} \\ {}^{\text{CH}_3} \end{array} \times - \begin{array}{c} {}^{\text{CH}_2} \\ {}^{\text{CH}_3} \end{array} \times - \begin{array}{c} {}^{\text{CH}_3} \end{array} \times - \begin{array}{c} {}^{\text{CH}_3} \\ {}^{\text{CH}_3} \end{array} \times - \begin{array}{c} {}^{\text{CH}_3} \end{array} \times - \begin{array}{c} {}^{\text{CH}_3} \\ {}^{\text{CH}_3} \end{array} \times - \begin{array}{c} {}$		

PALLADIUM-CATALYZED DESULFONYLATIVE COUPLING OF ARYLSULFONYL CHLORIDES WITH	Tetrahedron Lett. <u>30</u> ,975(1989)	
ACRYLATE ESTERS UNDER SOLID-LIQUID PHASE TRANSFER CONDITIONS		
Masahiro Miura, [*] Hideo Hashimoto, Kenji Itoh, and Masakatsu Nomura Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan		
$\frac{PdCl_2(PhCN)_2}{PdCl_2(PhCN)_2}$		
$K_2CO_3/BzOct_3NC1$		
DIASTEREOSELECTIVE SYNTHESIS OF α -ALKYL- β -HYDROXY THIOACETALS BY CHELATION-CONTROLLED ADDITION TO	Tetrahedron Lett. <u>30</u> ,977(1989)	
Q-HYDROXY KETENE THIOACETALS Toshio SATO, Masaki NAKAKITA, Satoshi KIMURA, and Tamots	u FUJISAWA*	
Chemistry Department of Resources, Mie University, Tsu, Mie 514, Japan		
Diastereoselective addition of		
aluminum hydride to (S)-2-(2-		
hydroxypropylidene)-1,3-dithianes affords syn- and anti-α-alkyl-β-		
hydroxy thioacetals, respectively. R' R R'		
RADICAL C-Se BOND CLEAVAGE OF SELENONIUM SALTS		
Mikio Hori*, Tadashi Kataoka, Hiroshi Shimizu, and Kazuhiro Tsutsumi		
Gifu Pharmaceutical University, 5-6-1, Mitahora-higashi, Gifu 502, Japan		
CH2 RMgX CH2	CCH ₂ Me	
SeMe or Mg	SeMe SeMe	
• Cyclic and acyclic selenonium salts were reduced by ma	igneatum rescents to sive C-Se bond	
cleaved products in good yields. A sulfonium salt similarly reacted.		
	T	
SYNTHESIS OF (\pm) -TALAROMYCINS A, B, C AND E	Tetrahedron Lett. <u>30</u> ,985(1989)	
Raymond Baker*, Alastair L. Boyes+ and Christopher J.		
Research Centre, Terlings Park, Harlow, Essex, CM 20 2QR. +Department of Chemistry, The University, Southampton, SO9 5NH, U.K.		
Two key unsaturated spiroacetals have been used in the synthesis of Talaromycins A. B. C		
and E. A A A A		
I have the the the sea is a line of the		
OR O O HO HO	A HOW B HOLC HOW E	

